Implementing Abstractions

Part Two



Previously, on CS106B...



class OurStack {
public:
OurStack();

void push(int value);
int peek() const;

int pop();

int size() const;
bool isEmpty() const;

private:
int* elems;
int allocatedSize;
int logicalSize;

}s
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Cradle to Grave

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;
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Cleaning Up our Messes



Destructors

* A destructor is a special
member function
responsible for cleaning up
an object's memory.

* It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

e The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:

OurStack();
~0urStack();

void push(int value);
int peek() const;

int pop();

int size() const;
bool isEmpty() const;

private:

}s

int* elems;
int allocatedSize;
int LlogicalSize;
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Getting More Space
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allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* .. move elements over .. */

delete[] elems;
elems = helper;




allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* .. move elements over .. */

delete[] elems;
elems = helper;




What is the big-O cost of a push?
What is the big-O cost of n pushes?

4 Items 6 Items

Moved Moved




Every push beyond the first
few requires moving all n
elements from the old array
to the new array.

Cost of a single push: O(n).

4 Ttems 6 Items
Moved Moved

7 Items
Moved




Every push beyond the first
few requires moving all n
elements from the old array
to the new array.

Cost of doing n pushes:
4+5+0+...+n=0(n?.

Question: How do we
speed this up?

4 Ttems 6 Items
Moved Moved

7 Items
Moved






Now, only half the

pushes we do will
A require moving
everything to a new
array.




Work Done

Operation Number

Increase array
size by adding

one.
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Work Done

Half of our pushes take
time O(1) because there’s
free space left.

Half of our pushes take
time O(n) as we move
all the elements.

Operation Number

Increase array
size by adding
two.




Work Done

What’s the average work
done with each push?

To find out, let’s see how
much total work was done.
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Work Done

1

Increase array
size by adding
two.

This roughly
halves the

work done.

Operation Number










If we make the new
array too big, we’re
might not make use
of all the new space.

What’s a good
compromise?




Idea: Make the new
array twice as big
as the old one.

This gives us a lot of
free space, and we
never use more than
twice the space we
need.



How do we analyze this?
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Work Done

Increase array
size by
multiplying
by two.
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Work Done

Most pushes take time
O(1) because there’s
free space left.

Infrequently, a push might
take time O(n) as we
move all the elements.

Increase array
size by
multiplying
by two.
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Work Done

Increase array
size by
multiplying
by two.

Average cost of a push: O(1).

Total cost of doing n pushes: O(n).

Operation Number



Amortized Analysis

 The analysis we have just done is called an
amortized analysis.

 We reason about the total work done by allowing
ourselves to backcharge work to previous
operations, then look at the “average” amount of
work done per operation.

* In an amortized sense, our implementation of the
stack is extremely fast!

* This is one of the most common approaches to
implementing Stack (and Vector, for that matter).



Summary for Today

 We can make our stack grow by creating new
arrays any time we run out of space.

 Growing that array by one extra slot or two
extra slots uses little memory, but makes
pushes expensive (average cost O(n)).

* Doubling the size of the array when we run
out of space uses more memory, but makes
pushes cheap (amortized cost O(1)).

* In practice, it’s worth paying this slight space
cost for a marked improvement in runtime.



Your Action Items

* Read Chapter 11 and Chapter 12.1

e There’s a lot of useful information there
about dynamic memory allocation and class
design.

* Start Assignment 5.

« Slow and steady progress is the name of the
game here.

* Ask for help if you need it! That’s what we’re
here for.



Next Time

* No Class Monday
« Then, When We Get Back...

 Hash Functions

- A magical and wonderful gift from the world of
mathematics.

 Hash Tables

- How do we implement Map and Set?
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